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Abstract 

This paper discusses the use of adaptive filters, in particular the GLM adaptive 
filter, in the construction of a reserving robot – a largely automated system for 
carrying out the estimation of outstanding claims liabilities at successive 
valuation time points. Rather than repeating the technical aspects of the GLM 
filter which are covered in other papers, this paper focuses on some of the 
practicalities in setting up an initial filtering model. An example of the 
reserving robot in action is given at the end of the paper. 

Keywords: adaptive filter, adaptive reserving, Bayesian revision, bootstrap, 
dynamic generalised linear model, DGLM, loss reserving, model blending, 
stochastic reserving. 
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1. Introduction 
The estimation of outstanding claims liabilities is one of the central problems 
faced by general insurers. To understand a company’s capital position and 
monitor its ongoing performance, it is necessary to regularly estimate the sum 
of money required to meet outstanding liabilities. A consequence of this for 
many companies is that the outstanding claims estimation (or valuation) 
process essentially operates on a revolving door basis, i.e., the exercise to 
estimate the outstanding claims liabilities as at the end of a particular quarter 
draws to a close, only for the valuation of the liabilities as at the end of the 
next quarter to begin. 

Various techniques are used to carry out a valuation. Some examples include 
the chain ladder in its various forms, payments based models (such as the 
payments per claim incurred and payments per claims finalised models) and 
case estimate based models (e.g. the projected case estimates model). A good 
review of existing methods is given in Taylor (2000). 

The following comments may be made about the techniques used in the 
estimation of outstanding claims liability estimation: 
 The models are frequently non-stochastic; 
 The models are usually static. 

A consequence of the first point is that there is no objective measure of a 
model’s performance in relation to the data. The model fitting process relies 
on the judgement of the actuary. While judgement is undoubtedly a valuable 
commodity and a cornerstone of the actuary’s trade, it is nonetheless true that 
two actuaries, exercising judgement, might, very reasonably, come to very 
different estimates of liabilities. 

Static models, whether stochastic or not, are calibrated to the experience to 
date. They are only applicable to future experience if that experience follows 
past experience. They have no innate ability to adapt to changing experience. 
Therefore, valuation upon valuation, an actuary must refit these models to the 
data from scratch. 

Large companies have many lines of business, all requiring separate 
estimation of the outstanding claims liabilities at each valuation date 
(frequently successive quarters), a time consuming process. So it would be of 
considerable value to automate the process.  

Consider the features any such automatic process, or reserving robot, would 
need to have: 
 The model must be able to adapt to changing experience without human 

intervention; 
 There should be an objective means of measuring the goodness of fit and 

performance of the model. 
The first requirement is the cornerstone of the reserving robot – experience 
rarely stays stable so any automatic process must have the flexibility to adapt 
to changes when sufficient evidence for such changes accrues.  
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The second requirement enables the reserving model to be tested by the robot 
to ensure that the fit to the data is adequate. At this stage of computer 
intelligence, no automatic programme could fully replace actuarial judgement. 
It is necessary to have tests to flag cases where the experience changes to the 
extent that intervention may be required to rework the model. 

One class of models that satisfy, at least to some extent, the requirements 
above are dynamic stochastic models. The dynamism means that the models 
can adapt to change while their stochastic nature means that a series of model 
diagnostics can be developed to test the performance of the model at each 
valuation point. 

The purpose of this paper is to discuss the use of one type of dynamic 
stochastic model – adaptive filters – and their potential use in the construction 
of a reserving robot. 
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2. Adaptive filters 
An adaptive filter, as applied to general insurance reserving, is a recursive 
algorithm that models (filters) the claims experience time period by time 
period (e.g. by accident period or calendar period). It is adaptive in that the 
model or filter may change from one period to the next should experience 
warrant it. In other words, the model parameters may evolve over time. 

Filtering methods fall into the class of Bayesian models. Such models combine 
prior beliefs (distributions) about parameters together with evidence from data 
(likelihood) to produce posterior estimates of these parameters. In the case of a 
filter the prior estimates are those based on data up to the previous period, 
while the posterior estimates are based on the prior and the current experience 
period’s data. The posterior estimates are modified relative to the prior 
estimates based on the amount of evidence for change in the data relative to 
the level of belief in the prior estimates. Thus, filters adapt to changing 
experience and this makes them suitable models for use in a reserving robot. 

2.1 The Kalman filter 

A well-known adaptive filter is the Kalman filter (Kalman, 1960) which was 
introduced into the actuarial literature by De Jong and Zehnwirth (1983). The 
model underlying the Kalman filter consists of two equations, called the 
system equation and observation equation respectively. The former describes 
the model’s parameter evolution, while the latter describes the model of 
observations conditional on the parameters. The two equations are as follows: 

System equation 

( ) ( ) ( ) ( )
1 1

1| 1 | 1
p p p p

s s s s s r sβ β
× × ×

+ = Φ + + +

1p ×

 (2.1) 

Observation equation 

( ) ( ) ( ) ( )
1 1

1 1 1|
p n p p p

Y s X s s s v sβ
× × × ×

+ = + + + +

1

1
 (2.2) 

These equations are written in vector and matrix form with dimensions written 
beneath, and 
 Y(s+1) denotes the vector of observations made at time s+1 (=1, 2,…T) 
 β(s+1) denotes the vector of parameters at time s+1 
 X(s+1) is the design matrix applying at time s+1 
 Φ(s+1) is a transition matrix governing the evolution of the expected 

parameter values from one epoch to the next 
 r(s+1) and v(s+1) are stochastic perturbations, each with zero mean, and 

with 
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[ ]
[ ]

Var ( 1) ( 1)

Var ( 1) ( 1)

r s R s

v s V s

+ = +

+ = +
 (2.3) 

The formal statement of the filter requires a little extra notation.  Let Y(s|s-k) 
denote the filter’s estimate of Y(s) on the basis of information up to and 
including epoch s-k; and similarly for other symbols at s|s-k.  Also, let Θ(s|s-k) 
denote the estimate of Var[β(s|s-k)].  

Equations (2.4) to (2.10) present the mathematical detail behind the Kalman 
filter. The process may be split into three steps. A description is given below. 

Step 1: forecast new epoch’s parameters and observations without new 
information 

( | 1) ( ) ( 1| 1)s s s s sβ β− = Φ − −  (2.4) 

( | 1) ( ) ( 1| 1) ( ) ( )Ts s s s s s R sΘ − = Φ Θ − − Φ +  (2.5) 

ˆ( | 1) ( ) ( | 1)Y s s X s s sβ− = −  (2.6) 

Step 2: calculate gain matrix (credibility of new observation) 

( | 1) ( ) ( | 1) ( ) ( )TL s s X s s s X s V s− = Θ − +  (2.7) 

[ ] 1( ) ( | 1) ( ) ( | 1)TK s s s X s L s s −= Θ − −  (2.8) 

Step 3: update parameter estimates to incorporate the new information 

( )ˆ( | ) ( | 1) ( ) ( ) ( | 1)s s s s K s Y s Y s sβ β= − + − −  (2.9) 

( )( | ) 1 ( ) ( ) ( | 1)s s K s X s s sΘ = − Θ −  (2.10) 

Equations (2.4) to (2.6) generate forecasts of the new epoch’s parameters and 
observations based on no new information. In a Bayesian framework, these 
estimates are the prior estimates for that epoch. The gain matrix (credibility of 
the new observation) is calculated in (2.8). This calculation compares the 
parameter variances with the process error (i.e. data variance) and calculates 
the credibility of the latest set of payments on this basis. Finally the parameter 
estimates are updated in equations (2.9) and (2.10). The process then moves 
onto the next epoch, starting again with equation (2.4).  
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The filter starts with prior estimates for β(0|0) and the associated dispersion 
Θ(0|0).   

2.2 The GLM filter 

Although a very flexible tool, the Kalman filter requires the assumption of 
normally distributed data. In the context of loss reserving, this is generally 
dealt with by assuming that the variables of interest (claim sizes, payments in 
a specific period etc) are log-normally distributed. Although a common 
assumption in the actuarial field (see, e.g, England and Verrall, 2002), this is 
an approach not without its problems. The main difficulty is the requirement 
for a bias correction which results from modelling a transformation of the data 
(in this case the log transform), the determination of which, particularly when 
the distribution of the data is only approximately known, can be problematic. 
A second drawback is the restriction to one possible distribution for the data. 
Modelling claim counts, for example, would not be easily done with either a 
normal or log normal distribution. 

An alternative is the GLM filter, derived by Taylor (2008), with some 
practical applications discussed in McGuire and Taylor (2007). This is an 
extension of the Kalman filter to certain members of the Exponential 
Dispersion Family of distributions (Nelder and Wedderburn, 1972; 
McCullough and Nelder, 1989). The family includes common distributions 
like the Normal, Poisson, Gamma and Inverse Gaussian. The Gamma 
distribution, and to a lesser extent, the Inverse Gaussian distribution, are both 
candidates for the modelling of long-tailed, strictly positive variables. The 
Poisson distribution is a natural choice for claim counts. Applied within the 
framework of a filter, this would mean updating a generalised linear model 
(McCullough and Nelder, 1989) rather than a normal linear model (the 
Kalman filter). 

Although Taylor (2008) gives a general form of the analytical filter, he notes 
that it is only tractable in a limited number of cases, depending on both the 
distribution used and the link function applied. However, tractable cases 
include the gamma distribution/log link and the Poisson distribution/log link; 
the former is useful for claim size modelling while the latter may be used for 
claim count or finalisation numbers estimation. An additional tractable case is 
the normal distribution/identity link which corresponds exactly to the Kalman 
filter. 

For the GLM filter, the system equation remains unchanged from that in (2.1). 
However, the observation equation becomes 

( ) ( ) ( )( ) ( )1

1 1

1 1 1|

p n p p

Y s h X s s s v sβ−

× × ×

+ = + + + +

1

1

p ×

 (2.11) 

where h-1 is the inverse link function and υ(s+1) is not necessarily normal. In 
the cases discussed in this paper, h-1 is the exponential function, while υ(s+1) 
is gamma or Poisson distributed. 
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The equations underlying the Analytical GLM filter follow the Kalman filter, 
in principle, but are considerably more complex and are not reproduced here. 
The equations for the Gamma error/log link case are outlined in Appendix A 
to this paper. For more complete information, the reader is referred to Taylor 
(2008) and McGuire and Taylor (2007). 

The philosophy behind the GLM filter is the same as that behind the Kalman 
filter in that prior estimates of an epoch’s parameters and observations (either 
based on user input if the first epoch, or data from previous epochs if not) are 
calculated. Then a quantity similar to the credibility gain matrix is calculated, 
based on the epochs’s observations, using which the parameter estimates are 
updated to take account of these data.  

Further, like the Kalman filter it is an analytical procedure, consisting of a set 
of equations. Therefore it is a quick procedure, taking negligible computing 
time. It is an appropriate tool to use in the construction of a reserving robot. 
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3. Data 
The data set used in Section 4 of this paper is that used throughout Taylor 
(2000), which is drawn from an Australian Motor Bodily Injury Portfolio from 
1978 to 1995. The data are adjusted for past economic inflation as per Taylor 
(2000). Data from accident years 1980 to 1995 is used in this paper. For 
convenience, the data used in this paper are replicated in Appendix B. This 
consists of claim payments (adjusted for past economic inflation) and 
estimates of ultimate claim numbers by accident year. 

In Section 5, the data used are long-tailed claims. The data are summarised as 
follows: 
 Total amount of claim payments for year of accident i (i=1, 2, …, 14) and 

development quarter j (j=1, 2, …, 53) 
 Total number of claims reported for year of accident i and development 

quarter j 
 Total number of claim closures for year of accident i and development 

quarter j 
 Total amount of case estimates for year of accident i and development 

quarter j 
The data were split into two groups by legal jurisdiction, and each of the above 
summaries was available for each of these two groups. 

Ultimate numbers of incurred claims by accident year were also available; 
these had been estimated in a separate modelling exercise. 

The payments and case estimate data were adjusted for past economic inflation 
in line with an Australian wage earning index. 

Some notation is defined here. Let 

  = claim payments in development period j for accident period i for 
jurisdictional grouping L (L=1, 2 for the bodily injury data and absent for 
the motor data); 

L
ijC

  = number of claims reported in development period j for accident 
period i for jurisdictional grouping L; 

L
ijN

 = number of claim closures in development period j for accident period 
i for jurisdictional grouping L; 

L
ijF

 = case estimates at end of development period j for accident period i 
for jurisdictional grouping L; 

L
ijE

 L
iU = estimated ultimate number of claims incurred in accident period i for 

jurisdictional grouping L; 
 = number of claims open for accident period i, at start of development 

period j for jurisdictional grouping L. 

L
ijO
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4. Constructing the robot 
In this section the process of setting up the reserving robot is illustrated using 
a PPCI model based on the motor bodily injury payments data from 1980 to 
1995. The steps involved in this process are: 
 Gather the relevant data; 
 Select the error distribution and link function; 
 Make assumptions on the process error associated with these data; 
 Select appropriate basis functions for modelling the data; 
 Initialise the parameter estimates; 
 Make assumptions on the variance within the parameter estimates; 
 Apply the filter; 
 Examine model diagnostics to ensure the fit is adequate. 

Once these steps have been carried out, the robot will be programmed. 

4.1 Data 

For this example, a PPCI (Payments per Claim Incurred ) model is used where 

PPCIij = Cij / Ui . 

The payments used are gross payments. 

4.2 Selecting the error distribution and link function 

As discussed by Taylor (2008) there is a limited number of error and link 
combinations for which an analytical version of the GLM filter exists. Such 
cases include: 
 Normal error, identity link (which is identical to the Kalman filter); 
 Gamma error, log link; 
 Gamma error, reciprocal link; 
 Poisson error, log link. 

For PPCI data, possible choices would be a gamma distribution or the log-
normal model (meaning that the Kalman filter would be applied to log(PPCI)). 
As indicated in Section 2.1, there are difficulties associated with the log 
transform required to use the Kalman filter, namely the bias correction. Thus 
the Gamma distribution has been selected here. To guarantee strictly positive 
PPCI values, a log link is used. 

4.3 Process error 

The process error is the variance associated with the data. All else being equal, 
the more variable the data, the greater support needed for the filtered 
parameter estimates to change significantly from one period to the next since 
there is a good chance that changes result from noise rather than a genuine 
shift in experience. Conversely if the process error is low, then changes should 
be followed by the filter since these are likely to be genuine experience 
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effects. Process error may vary by development period or even by accident and 
development period. 

It is necessary to make assumptions regarding the levels of process error in the 
data. For the gamma distribution, this may be done by making assumptions for 
the coefficient of variation relating to each cell. It is reasonable to expect that 
the coefficient of variation might vary by development period only. Guidance 
may be sought from the data on the levels of variation seen. 

For the motor data used here, the mean and standard deviation of the observed 
PPCI values are calculated by development year, from which the coefficient of 
variation is calculated. This process is illustrated in Figure 4.1. 

Looking at the filter from a Bayesian viewpoint, the process error assumptions 
represent information about the data or likelihood. Thus, their estimation on 
the basis of the data itself is reasonable. 

Figure 4.1 Selection of coefficients of variation 
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4.4 Selection of basis functions 

In the particular example of the PPCI model for the motor bodily injury data, 
the PPCI by development year are modelled for each accident period. Thus it 
is necessary to choose appropriate basis functions to accommodate the pattern 
of average claim payments. 

One possibility for PPCI values is to use a Hoerl Curve (De Jong and 
Zehnwirth, 1983; Wright, 1990). This has the following form:  
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( ){ }0 1 2exp 1 log , 1,2,...ij j j jμ β β β= + − + =  (4.1) 

where ijμ represents the mean value of PPCIij in cell (i,j). 

For the data here, the Hoerl curve above is used with one modification in that 
an additional basis function is used to separately model the first development 
year. Therefore the model applied is 

( ){ }0 1 2 3exp ( 1) log I( 1) , 1,2,...ij j j j jμ β β β β= + − + + = =  (4.2) 

with basis functions: 
 1; 
 j-1; 
 log(j); 
 I(j=1) where I(condition) is the indicator function, being 1 if the condition 

is true and 0 otherwise. 

4.5 Initialisation of parameter estimates 

The filter requires initial values for the parameters [β(0|0)] associated with 
each of the basis functions. Although, in principle, any values could be input 
since the filter will eventually adapt to the experience, there is generally 
insufficient experience to allow this adaptive process to run its course if the 
starting parameters are very wrong. Therefore, it is best to start with 
reasonable choices. 

Figure 4.2 Initialisation of parameter estimates 
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One way of selecting the initial parameters is to fit the basis functions to the 
first accident year in isolation, and use these values as the starting point for the 
filter. Here, however, it is observed that experience in accident years 1980 – 
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1982 is somewhat different to that in later years in early to mid development 
years. Hence, the basis functions were fitted to the log of the average PPCI 
values for accident years 1983-1985 using unweighted least squares regression 
(see Figure 4.2 and Table 4.1) and these values used as the starting point. This 
means that the filter will poorly fit early to mid development periods for the 
early accident years. However it is the estimates for the later development 
periods only that are of interest for these accident periods; here the model 
forecasts are more reasonable. 

Table 4.1 Parameter initialisation using unweighted linear regression 

Develop- Ave PPCI log(PPCI) Basis Parameter Parameter
ment year 1983-85 function estimate variance

0 3,365 8.121 1 7.661 0.0010
1 6,914 8.841 j-1 -0.669 0.0005
2 8,691 9.070 log(j) 2.541 0.0005
3 9,287 9.136 I(j=1) 0.460 0.0010
4 7,511 8.924
5 5,882 8.680
6 7,488 8.921
7 3,823 8.249
8 2,707 7.903
9 1,879 7.539

10 1,214 7.102
11 829 6.720
12 381 5.943

 

4.6 Parameter variance 

Selecting appropriate parameter variances is a more difficult task. The 
parameter variances correspond to matrix Θ(0|0). From a Bayesian perspective 
these represent prior beliefs about the variance of the parameter estimates. 
Some ways of selecting these include: 
 Putting high variances on these parameters; this corresponds to an 

uninformative prior which is appropriate in Bayesian problems if the user 
has no prior knowledge of what the parameters should be; 

 Small variances on the parameters: in general in Bayesian problems this 
corresponds to having strong beliefs about what the parameters are. A 
large amount of evidence to the contrary within the data would then be 
required to materially alter the parameter estimates. 

Within the context of an adaptive filter, these two cases have additional 
implications to those outlined above. High variances will effectively mean that 
a different model is fitted independently to each epoch of the filter. It therefore 
means that the number of parameters in the model is large since the parameters 
for each epoch are essentially independent of each other. The model is not 
parsimonious and is prone to over-fitting. Conversely using very low 
parameter variances leads to the filter being unlikely to change from one 
epoch to the next. Essentially this means that a static model is fitted to the 
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data. The model is parsimonious, but loses its adaptive nature. Thus, it is not 
particularly useful as a reserving robot. 

Not surprisingly, a compromise between the two extremes is required. Low 
parameter variances mean that there are strong relationships between the 
parameter estimates in one epoch and those in the next, meaning that the 
effective number of independent parameters is considerable less than the 
product of the number of parameters in each epoch and the number of epochs. 
Therefore, the parameter variances should be low enough to keep the effective 
number of parameters low so as to prevent the model over-fitting, yet high 
enough that the filter’s adaptive ability is maintained. 

At present this choice comes down to judgement. Typically values of the order 
of 10-3 to 10-5 are required. Some experimentation may be necessary to strike 
the necessary balance. 

Further there is an additional reason not to use over-large parameter variances 
for the GLM filter. As described in Taylor (2008), the GLM filter is a second 
order approximation to the Bayesian updating of a GLM. It relies on a number 
of approximations based on Taylor series. High variances may lead to the 
higher order terms of these series becoming too large, and is likely to result in 
numerical instability of the filter. 

It is customary to assume that the prior covariances between parameters are 
zero. It is also customary to assume that R(s) (see equation (2.1)) is constant 
for all s and is equal to Θ(0|0). 

The variances assumed here are given above in Table 4.1. The level parameter 
(basis function of 1) has a variance of 0.001 and thus, a standard deviation of 
0.03. This means that the level of the PPCI curve has about a two thirds 
chance of not shifting by more than 3% from one accident period to the next. 

4.7 Applying the filter 

Once the various inputs (process error and initial parameter estimates and 
variances) have been selected, the filter may be run. In this case the filter 
successively models accident years 1980 through to 1995. 

4.8 Model diagnostics 

It is important to ensure the model is fitting the data adequately. Some tests 
which may be used are given below. 

4.8.1 Comparing the actual and fitted data 

One useful diagnostic is to plot the actual and fitted log(PPCI)s by successive 
accident years. Such plots are given for three accident years (1982, 1984 and 
1990) in Figure 4.3, Figure 4.4 and Figure 4.5 below. Also included in these 
graphs is the fitted curve from the previous accident period. 
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At the start of accident year 1982, the fit is poor. This was discussed in Section 
4.5. However the fit to the latter development years is reasonable. The fit to 
accident year 1981 is very similar to that for 1982 suggesting comparable 
experience between the two accident years. 

Figure 4.3 Actual and fitted data - 1982 
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Figure 4.4 Actual and fitted data - 1984 
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The model fits accident year 1984 well. There has been some upward 
movement in the fitted values between 1983 and 1984. 

Figure 4.5 Actual and modelled data - 1990 
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Figure 4.5 provides a good demonstration of the filter in action. The 1990 data 
suggest slightly higher payments and a slightly longer mean term to payment 
than the curve fitted to accident year 1989. Consequently the curve moves 
upwards. However, it does not fully move to reflect the 1990 experience due 
to the relatively low parameter variances imposed (Section 4.6). 

4.8.2 Actual and expected triangle 

The triangular arrangement of the ratio of actual to expected PPCI values is 
also useful to identify regions of poor fit. Figure 4.6 presents these ratios for 
this model. This triangle is colour-coded with blue meaning that actual PPCI 
values are greater than fitted and vice versa for pink.  

Some problems are identified in this triangle. Firstly, the fit is poor in the early 
to mid development years for the first three accident years. However, that is 
expected due to the initialisation of the parameters. For mid-range accident 
years (1985-1990) there do appear to be some problems in development years 
0 to 4 where the model tends to over-estimate the PPCI. 

It is useful looking at this information summarised in the three directions of 
the triangle – by rows (accident year), by columns (development year) and by 
diagonal (calendar or payment year). Figure 4.7 presents this information. If 
the model fits well, then the lines on this graph should be randomly located 
around 100%. It is seen that the ratios appear satisfactory by accident and 
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development period, but show a definite pattern by calendar year. The 
diagnostic is picking up the problems identified in the paragraph above. 

Figure 4.6 Actual/Expected ratios 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1980 173% 196% 119% 130% 120% 99% 86% 45% 72% 41% 118% 92% 109% 189% 290% 0%

1981 158% 131% 145% 125% 91% 89% 79% 81% 69% 104% 236% 37% 9% 16% 95% 0%

1982 89% 162% 118% 150% 106% 80% 48% 44% 86% 199% 85% 43% 100% 137% 0% 0%

1983 102% 118% 93% 102% 106% 67% 87% 98% 91% 41% 131% 122% 107% 0% 0% 0%

1984 101% 111% 103% 97% 70% 67% 216% 106% 166% 98% 81% 124% 0% 0% 0% 0%

1985 75% 82% 79% 82% 79% 113% 106% 96% 50% 175% 119% 0% 0% 0% 0% 0%

1986 71% 98% 71% 77% 98% 94% 136% 120% 122% 53% 0% 0% 0% 0% 0% 0%

1987 74% 70% 68% 81% 83% 115% 114% 152% 144% 0% 0% 0% 0% 0% 0% 0%

1988 71% 104% 49% 95% 71% 96% 149% 77% 0% 0% 0% 0% 0% 0% 0% 0%

1989 92% 69% 71% 73% 131% 142% 103% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1990 98% 93% 56% 84% 139% 144% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1991 104% 77% 106% 90% 109% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1992 99% 99% 78% 159% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1993 120% 93% 96% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1994 100% 106% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

1995 105% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

 

Figure 4.7 Actual/expected graph 
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4.8.3 Other residual plots 

Usual residual plots like scatterplots, histograms and quantile-quantile plots 
may also be used. For the GLM filter it is best to use the deviance residuals 
since these are approximately normal. An example of these plots is given in 
Figure 4.8, a scatterplot of the deviance residuals against the fitted values. 
These residuals should form a cloud around zero with no changes in spread by 
fitted value, as seen in Figure 4.8. However it should be noted that the 
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residuals from a filter are, by their nature, not independent so a greater 
tolerance is needed in interpreting these residuals. Some evidence of this may 
be seen in Figure 4.6 and Figure 4.7. 

Figure 4.8 Deviance residuals by fitted values 
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4.9 Risk margins 

Prudential standards in Australia require the specification of risk margins as 
well as the central estimate of liability. These are defined as the maximum of 
the 75-percentile (as the excess over the mean) and half the coefficient of 
variation. 

Any reserving robot must be able to calculate risk margins and indeed it is 
relatively straightforward to do so. Since the adaptive filter is a stochastic 
method, it is possible to use bootstrapping to obtain a distribution of the 
reserves from which the risk margins may be calculated. 

The bootstrapping process is described in McGuire and Taylor (2007) and is 
not repeated here. However, it is worth noting that the usual bootstrapping 
methods for outstanding claims liability estimation (see, e.g., Taylor 2000, 
Pinheiro et al 2003) may not be used for the adaptive filter since these 
methods require independent residuals. If that procedure were applied to the 
GLM filter, then the predictive variance would be under-estimated. Stoffer and 
Wall (1991) discuss an appropriate procedure for bootstrapping the Kalman 
filter and its dependent residuals. This approach is appropriate for the GLM 
filter, and the modification required to adapt it to the GLM filter is outlined in 
McGuire and Taylor (2007).  

The output from the bootstrap is a large number of simulations, say 1000, each 
one containing the cell by cell projection of outstanding claims liabilities. 
These may be summed to get the distribution of the total outstanding by 
accident year and overall. Table 4.2 presents the results for the PPCI model 
based on the inputs discussed above. 
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The overall coefficient of variation is quite high. This is a reflection of the fact 
that the PPCI model is a poor model for these data (as evidenced by the higher 
coefficients of variation associated with this model relative to the PPCF in 
Taylor, 2000) which is perhaps not surprising given that these are motor 
bodily injury data and therefore more amenable to modelling by a lump sum 
payment model like the PPCF model. 

Note that the coefficients of variation quoted in Taylor (2000) using the 
Kalman filter with the PPCI model are not directly comparable with the 
coefficients of variation here. The former coefficients of variation are based on 
the bootstrap for independent residuals which, as indicated above, will under-
estimate variability in an adaptive filter. 

Table 4.2 Results from bootstrapping 

Accident Liability Standard Coefficient 75-percentile
year estimate Deviation of variation (% of mean)

$'(000) $'(000) % %

1980 135 69 51 128
1981 244 128 52 140
1982 388 253 65 124
1983 498 317 64 123
1984 1,166 842 72 116
1985 1,912 1,390 73 121
1986 2,947 1,640 56 140
1987 5,285 2,837 54 130
1988 6,858 3,743 55 116
1989 12,149 5,490 45 120
1990 20,205 8,388 42 118
1991 28,910 11,683 40 115
1992 44,442 14,203 32 118
1993 52,551 15,142 29 114
1994 61,467 16,905 28 114
1995 68,180 17,576 26 111

Total 307,337 91,171 30 113  

4.10 Multiple models and model blending 

Since different models perform best for different types of data, it is common 
practice to apply several models and blend the results of these to form the 
overall liability estimate at a valuation date. A possibility is the blending 
process developed in Taylor (1985). The actual process used here is described 
in McGuire and Taylor (2007) and is a modification from the process 
described in Taylor (2000), which in turn is a slight variation of the original 
1985 version. The blending procedure takes account of the variances of each 
of the model’s results, the smoothness of the liability estimate relative to case 
estimates and the smoothness of the weights themselves in the production of 
model blending weights. 
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For the data above it would be expected that the PPCF model would perform 
better than the PPCI model and that the PCE (Projected Case Estimates) model 
would perform better for earlier accident periods than both payments based 
models. Taylor (2000) uses the Kalman filter for all three models and finds 
exactly that, as indicated by the coefficients of variation associated with each 
accident year. The blending process therefore downweights the PPCI relative 
to the PPCF and downweights both payments based models relative to the 
PCE in earlier accident periods and vice versa in more recent accident years. 

4.11 Running the robot 

As seen above, there is a substantial time cost in setting up the robot. 
However, once the adaptive model has been set up and tested at one valuation 
period, the workload in future quarters should be greatly reduced. Since the 
model is adaptive, it will automatically adapt to new experience as that arises 
in future valuation periods. Often all that will be required in future periods is 
to prepare the data, run the model (the inputs remain the same except for any 
economic inflation adjustments that may be needed, or changes to numbers 
incurred) and examine the model diagnostics to ensure the model fit is still 
adequate. Thus, a large part of the model fitting process happens automatically 
in subsequent periods. 

Of course, some changes will be too great or too sudden for the filter to 
handle. Examples might be major changes due to legislation or the changing of 
benefits etc. Such cases should be detected through poor model diagnostics 
and would require intervention, possibly in the form of a full remodelling of 
the data as discussed above. For a company with many lines of business, all 
reserved using the filter robot, this might mean that at any given valuation, 
80%-90% of the lines of business require no intervention while the remainder 
would need moderate to major remodelling. Moderate intervention might 
involve changing some of the inputs such as the parameter variances or data 
error. Major intervention may be changing the basis functions, or a change in 
data modelled or anything else that would require full remodelling of the 
experience. 

 



Building a reserving robot  21 

5. The robot in action 
The next example of the reserving robot in action has been taken from 
McGuire and Taylor (2007). It works through the PPCI, PPCF and PCE 
models for a long-tailed data set (described in Section 3). The three models are 
bootstrapped and the results blended to produce final estimates of outstanding 
claims liability and associated risk margin. 

5.1 Payments per claim incurred model 

Let 

/L L
ij ij iPPCI C U= L

j

 (5.1) 

For this data set, the Hoerl curve is used as a starting point. Further, each 
jurisdictional group is permitted to have its own shape. The applied model has 
the form: 

{
}

0 1 2 3

4 5 6 7

~ ( , )

exp log min( ,16)

I( 1){ log min( ,16)

L L
ij ij j

L
ij i i i i

i i i i

PPCI Gamma v

j j j

L j j

μ

μ β β β β

β β β β

= + + +

+ = + + +

 (5.2) 

where  vj = coefficient of variation in development quarter j and may be 
estimated based on the data and actuarial judgement as discussed in Section 
4.3. 

Examples of the actual data and fitted model are shown below in Figure 5.1, 
which plots PPCIs for the one of the jurisdictional groups (labelled as group 
0). Note that both graphs are presented on the same vertical scale. Thus, 
movement in average claim payments from accident year 1 to 5 is apparent in 
these plots. 

Figure 5.1   Fitted PPCI model 
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Actual and fitted in year 5
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5.2 Payments per claims finalised model 

The payments per claims finalised model (PPCF) actually consists of two sub-
models: 
 Average payments per claim finalised; 
 The probability a claim finalises in a particular quarter. 

Model of Average payments per claim finalised 

Let 

/L L
ij ij ijPPCF C F= L  (5.3) 

Average payments per finalised claim tend to increase with age of claim since 
the more complicated and serious claims are more likely to take longer to 
settle. For the data in this paper, the following model is used: 
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 (5.4) 

where  

L
ijμ  = the mean in cell (i,j); L

ijPPCF

vj = coefficient of variation in development quarter j; and 

modelling begins in the second development quarter (i.e. j=2). 

Figure 5.2 Fitted PPCF model 
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Actual and fitted in year 5
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Examples of the actual data and fitted model are shown in Figure 5.2. Again 
both graphs are presented on the same vertical scale. 

Model of probability of finalisation 

Let 

( )3L L L L
ij ij ij ijPRF F O R= +  (5.5) 

The denominator in (5.5) is an exposure measure of the number of claims that 
may be finalised in cell (i,j). The probability of finalisation for the data in this 
paper is quite a volatile quantity; therefore simple models have been used. 
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 (5.6) 

where  

L
ijμ  = the mean in cell (i,j); and L

ijPRF

vj =  ratio of the variance to the mean, which may exceed 1 (standard 
Poisson) through the use of an over-dispersed Poisson. 

Examples of the actual data and fitted model are shown in Figure 5.3. Again 
both graphs are presented on the same vertical scale. 

Figure 5.3 Modelled finalisation probabilities 
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Actual and fitted in year 5
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5.3 Projected case estimates model 

The projected case estimates model examines the further development 
required by case estimates at a given point in time to be sufficient to settle 
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claims in full. In any given development period and accident period, the 
hindsight estimate of case estimates at the end of the quarter (the sum of 
payments in that quarter and closing case estimates) may be compared against 
opening case estimates. If the opening case estimates were sufficient, then the 
ratio would be one; a value greater than one indicates that the opening 
estimates are now considered insufficient, while a value less than one indicates 
they are now considered excessive. 

Therefore, there are two quantities to be modelled – case estimates and 
payments. Both may be expressed as factors relative to the opening case 
estimates. 

Payment factors 

Payment factors are defined, for j=2, 3, …, as: 

, 1
L L L

ij ij i jPF C E −=  (5.7) 
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ijPF
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where  

L
ijμ  = the mean in cell (i,j); and L

ijPF

vj = coefficient of variation of the payment factors in development 
quarter j. 

Figure 5.4 Modelled payment factors 
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Actual and fitted in year 5
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Examples of the actual data and fitted model are shown in Figure 5.4. 

Case estimate development factors 

Traditionally, the case estimate development factors model is based on the 
development of the hindsight case estimates. Thus, the modelled quantities are 
defined, for j=2, 3, … as: 

( ) , 1
L L L L

ij ij ij i jCEDF E C E −= +  (5.9) 

However, comparison with (5.7) indicates that, based on this definition, the 
{CEDF} and {PF} would not be independent. Although this is 
inconsequential for the traditional deterministic application of the PCE model, 
it does matter for the stochastic application. Therefore, in this paper, the 
following definition of a case estimate development factor is used: 

, 1
L L L

ij ij i jCEDF E E −=  (5.10) 

To preserve the relationship with amount paid in a cell (i,j), the payment 
factors are included within the model for the {CEDF}. Thus, the model is: 
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 (5.11) 

where  

L
ijμ  = the mean in cell (i,j); and L

ijCEDF

vj = coefficient of variation in development quarter j. 

Figure 5.5 Modelled case estimate development factors 
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Actual and fitted in year 5
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Examples of the actual data and fitted model are shown in Figure 5.5. 

5.4 Results 

The models described above were applied to the data using the GLM filter 
based robot described in Section 4. 

Table 5.1 displays the results for each of the three models for jurisdiction 0, 
together with the bootstrapped estimates of coefficient of variation. Note that 
the results have been scaled for confidentiality reasons. The PPCF and PCE 
models perform best as measured by coefficient of variation. For these data, 
the three models give broadly consistent results for all years but the most 
recent. 

Table 5.1 Results for jurisdiction 0 

Accident
year Mean CV Mean CV Mean CV

1 8 229% 132 55% 22 105%
2 20 216% 242 47% 56 108%
3 58 166% 165 58% 23 98%
4 110 135% 268 47% 70 90%
5 242 100% 861 30% 317 62%
6 292 71% 1,216 27% 671 64%
7 680 59% 1,257 27% 799 44%
8 819 53% 1,672 27% 1,319 40%
9 2,262 49% 3,366 25% 2,040 32%
10 3,546 49% 3,510 22% 2,368 31%
11 6,363 48% 6,041 21% 5,480 31%
12 7,151 46% 6,742 20% 6,700 31%
13 8,461 44% 8,664 21% 7,234 33%
14 8,904 42% 9,015 21% 3,749 98%

Total ex 14 30,011 34,136 27,099
Total 48,589 42% 41,721 18% 29,366 22%

PPCI PPCF PCE

 

Table 5.2 displays the results for the other jurisdictional grouping of data. It is 
seen that the PPCF and PCE models perform best for these data. The PPCI 
model with universally high coefficients of variation performs poorly. These 
data show changes in the rates of finalisation in recent years, which changes 
the profile of average payments paid per development period, which in turn, 
impacts on the reliability of the PPCI model. Further, the results of the PPCF 
and PCE models are quite similar (ignoring the most recent year – PCE 
models generally perform poorly on recent accident periods) while the PPCI 
model gives substantially higher results. 
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Table 5.2 Results for jurisdiction 1 

Accident
year Mean CV Mean CV Mean CV

1 45 224% 6 232% 0 0%
2 118 210% 146 58% 215 148%
3 159 187% 36 116% 0 0%
4 140 205% 236 45% 72 112%
5 236 159% 226 48% 52 73%
6 329 113% 365 40% 417 60%
7 440 98% 686 34% 565 54%
8 635 94% 780 34% 519 53%
9 1,824 90% 1,430 27% 1,303 48%
10 5,654 83% 6,470 24% 6,225 55%
11 8,246 84% 6,219 21% 6,923 59%
12 9,023 83% 6,580 20% 5,536 65%
13 9,210 79% 7,716 21% 5,713 74%
14 12,530 77% 10,826 21% 1,827 128%

Total ex 14 36,058 30,895 27,539
Total 38,915 76% 43,151 19% 30,849 45%

PPCI PPCF PCE

 

Figure 5.6 Distribution of PPCI results 

 

Histograms of the bootstrapped distributions for jurisdiction 0 for each of the 
models are presented in Figure 5.6, Figure 5.7 and Figure 5.8. 
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Figure 5.7 Distribution of PPCF results 

 

 

Figure 5.8 Distribution of  PCE results 

 

The blending algorithm discussed in McGuire and Taylor (2007) is applied. 
Through some inputted constants, this takes account of the predictive 
variances of the results, the smoothness of the weights and the smoothness of 
the progression of the blended estimates to the case estimates in determining 
final weights. The reader is referred to McGuire and Taylor (2007) for details 
of the input selections made in the production of the weights. The model 
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blending weights are shown in Figure 5.9 and Figure 5.10 for each of the two 
jurisdictional groupings. 

Figure 5.9 Selected weights for jurisdiction 0 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Accident year

%

PPCI PPCF PCE
 

A final point to note is the relatively high weight assigned to the PCE model 
for accident year 14, particularly for jurisdictional grouping 1. Although the 
PCE results for year 14 have a high coefficient of variation (refer to Table 5.1 
and Table 5.2), the quantum of liability is small relative to the other models, 
meaning in turn, that the standard deviation in absolute terms is low. The 
practitioner may wish to judgementally increase the standard deviation to put 
it on more similar terms with the other models; however, this has not been 
implemented here. 

Figure 5.10 Selected weights for jurisdication 1 
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The ratio of the blended liability (that results from the weights above) to case 
estimates is shown in Figure 5.11 in which the horizontal axis relates to 
accident years. Given the immaturity of the case estimates in year 14 (the most 
recent), this comparison has been omitted. It is seen that the progression is 
satisfactory.  Ratios of zero appear for Years 1 and 3 in jurisdiction 1, but in 
fact case estimates are zero in these years. 

Figure 5.11 Ratio of blended results to case estimates for L=0 (left graph) 
and L=1 (right graph) 
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The final results are given in Table 5.3. It is observed that the coefficients of 
variation are generally lower than the individual coefficients of variation from 
each component model, particularly for the coefficient of variation for the total 
liability. 

Table 5.3 Blended results 

Accident
year Mean CV Mean CV

1 22 104% 0 20051%
2 56 107% 213 145%
3 24 96% 3 1413%
4 70 90% 73 110%
5 324 60% 52 72%
6 702 58% 415 59%
7 847 38% 561 49%
8 1,375 32% 567 39%
9 2,317 24% 1,447 32%
10 2,672 21% 6,273 26%
11 5,712 20% 6,649 22%
12 6,771 18% 6,655 20%
13 8,035 17% 7,425 20%
14 7,963 20% 6,811 23%

Total 36,891 12.7% 37,144 16.6%

L=0 L=1
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6. Discussion 
This paper discusses the creation of a reserving robot for automatically 
carrying out much of the analysis involved in outstanding claims estimation.  

Recall the features that any such automatic process, or reserving robot, would 
need to have, as specified in the introduction: 
 The model must be able to adapt to changing experience without human 

intervention; 
 There should be an objective means of measuring the goodness of fit and 

performance of the model. 
Adaptive filters such as the GLM filter satisfy the first criterion. This was 
illustrated in Sections 4 and 5. They satisfy the second criterion through the 
use of model diagnostic tests based on residuals and comparisons of actual and 
expected values as well as the use of the bootstrap to estimate the predictive 
distribution of the results. 

Section 4 discusses the steps required in setting up the reserving robot while 
Section 5 gives an example of the full robot in action at a valuation date. 

Reserving robots such as the one discussed here have to potential to offer 
considerable time and cost savings to companies with many lines of business. 
While there is a substantial cost of setting up the models in the first place, 
significant savings should be realised in subsequent valuations. This comes 
hand in hand with the implementation of a full stochastic model and the 
availability of risk margin estimates through bootstrapping. 

Of course the robot cannot do the entire reserving job. For instance, the 
adaptive filters may be applied to gross data with subsequent allowance for 
recoveries by the actuary (though those could also be filtered). Further, the 
bootstrapping process as described here will not provide information on the 
diversification benefit that should be applied to the individual risk margins. 
However the synchronised bootstrap (a procedure for jointly bootstrapping 
many lines of business to preserve correlations; Taylor and McGuire, 2007) 
could be incorporated into the bootstrapping procedure and used for the 
estimation of the overall risk margin. 

A number of items are still under investigation. Firstly, the parameter variance 
estimation is currently driven by judgement as is standard practice in Bayesian 
problems. The possibility of developing a more objective way for selection of 
these variances is being examined. Secondly, the model diagnostics need to be 
manually examined each quarter. It may be possible to develop some key 
indicators to give warning when possible evidence of model misfit has been 
found – a case of building primitive eyes for the robot. 

It is likely that there is a wide range of potential application for a robotic 
reserver. It is also equally likely that there will be lines of business which are 
not suitable for an automated stochastic process. Some of these will be 
obvious – cases where there are little data and/or highly volatile data. Other 
cases may not be so clear-cut. Therefore, any reserving robot should be run in 
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tandem with existing methodology for a number of valuations until confidence 
is gained that the robot is sufficient for the task. 
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Appendix A   Gamma distribution/log link filter 
The system equation for the Analytical Gamma GLM filter is the same as that 
in (2.1). However, the observation equation differs due to the log link and is 

( ) ( ) ( ){ } ( )exp | 1Y s X s s s v sβ= − +  (A.1) 

Some other quantities of importance within the Gamma GLM filter are 

( ) ( ) ( ){ }

( ) ( ) ({ }
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s s j M s s j s s

β

β

− ⎡ ⎤= − − − −⎣ ⎦−

⎡ ⎤Γ − = − − − −⎣ ⎦)
 (A.2) 

where M(s|s-j) is defined in (A.5) and (A.14) below. 

The Gamma GLM filter is applied to these quantities, from which the 
parameter means and variances are derived. The steps of the filter are: 

Step 1: parameter estimates for new epoch based with no new 
information 

( ) ( ) ( ) ( ) ( )E | 1 E 1 | 1s Y s s s Y sβ β− = Φ − −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦  (A.3) 

( ) ( ) ( ) ( ) ( ) ( ) (Var | 1 Var 1 | 1s Y s s s Y s s R sβ β− = Φ − − Φ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ )

)

)−

 (A.4) 

where  is the identity matrix in the example of filtering in this paper 
(where filtering is applied by row, each row having different parameters). 

( 1sΦ +

Let h-1(s|s-j) be the reciprocal of 1/h-1(s|s-j). Define M(s|s-1) and Q(s|s-1) as 
the orthogonal and diagonal matrices respectively satisfying  

( ) ( ) ( ) ( ) (| 1 | 1 | 1 | 1TM s s Q s s M s s Var s Y sβ− − − = ⎡ ⎤⎣ ⎦  (A.5) 

Also define:  

( ) ( ) ( ) ( ){ }1

1 0.5 | 1 exp E | 1 | 1
( | 1)

I Q s s M s s s Y s
h s s

β− = + − − − −⎡ ⎤ ⎡⎣ ⎦ ⎣−
⎤⎦  (A.6) 

( ) ( ) ( ) ( ) ( ){ }| 1 | 1 diag exp 2E | 1 | 1s s Q s s M s s s Y sβΓ − = − − − −⎡ ⎤⎣ ⎦  (A.7) 
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Step 2: taking the new data into account 

Define N, W as 

[ ]{ }
1 1

2( | 1) [ ( | 1)] [1 ( | 1)]

diag exp ( | 1) ( ) | ( 1)

N s s s s Q s s

M s s E s Y sβ

−− = Γ − + −

− − −
 (A.8) 

1

1( | 1) ( | 1)
( | 1)

W s s N s s
h s s−

⎡
− = − ⎢ −⎣ ⎦

⎤
⎥  (A.9) 

where diag(v) means the diagonal matrix corresponding to the vector v. 

Then 

( )1( | 1) ( | 1) log ( | 1) ( | 1)Ts s M s s N s s W s sβ −− = − − − −  (A.10) 

Further define: 

{ }( | ) diag exp ( | ) ( | 1) 0,1B s s j M s s j s s jβ− = − − − − =  (A.11) 

{ }( ) diag exp ( ) ( | 1)G s X s s sβ= − − −  (A.12) 

and P(s) and D(s) as the orthogonal and diagonal matrices respectively 
satisfying 

[ ]
( ) ( ) ( ) ( | 1) ( | 1)

( | 1) ( ) diag ( ) ( ) ( ) ( ) ( | 1)

T

T T

P s D s P s N s s B s s
M s s X s G s s Y s X s M s s

= − −

+ − Λ −
 (A.13) 

Then  

 ( | ) ( ) ( | 1)M s s P s M s s= −  (A.14) 

and 

{ }

1

( ) ( ) ( | ) ( )

( | 1) ( | 1) ( | 1) ( )
×

DIAG ( ) ( ) ( ) ( ) ( | 1)

× ( | 1) ( ) ( )

T

T

T

T

J s P s B s s P s

N s s B s s M s s X s
G s s y s X s M s s

M s s X s s

−

=

⎡ ⎤− − + −
⎢

Λ −⎢ ⎥⎣ ⎦
− Λ

⎥  (A.15) 

Finally, measuring the extent to which the new data should be allowed to 
adjust the parameter estimates: 
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1( ) ( | ) ( ) ( ) ( )K s B s s P s J s G s−=

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1| | | | | |TVar s Y s M s s H s s s s H s s M s sβ − −= Γ⎡ ⎤⎣ ⎦

( ) ( ) ( )1
1 | diag |H s s h s s−
− =

[

 (A.21) 

In (A.21) and (A.20),  

 (A.22) 

where h-1(s|s) is the reciprocal of 1/h-1(s|s).  

The filter is initialised by setting initial values (i.e. prior values) for 
]

 (A.16) 

Step 1a: estimates of the observations without new data 

(Note this is defined here rather than in Step 1 due β(s|s-1) forming part of the 
definition) 

( ){ }ˆ | 1 exp | 1Y s s X s s sβ− = −  (A.17) 

Step 3: updating the parameters to take account of the new data 

( ) ( ) ( ) ( )( )1
ˆ1 diag exp | | 1 1 ( ) | 1( | ) M s s s s K s Y s Y s sh s s β−

⎡ ⎤= − − − − −⎡ ⎤⎣ ⎦ ⎣ ⎦

( ) ( ) ( )1 2| |s s D s B s s−Γ = −

( ) ( ) ( ( )

(A.18) 

where 1 represents a vector with all entries unity, rather than the unit matrix. 

 (A.19) 

) ( ) ( )1|s s H

E (0) | (Yβ 0)  and 

( )2
1

1 1| | log | 1
| 2

TE s Y s M s s
h s s

β −− s s
⎧ ⎫⎪ ⎪= − + Γ⎡ ⎤ ⎨ ⎬⎣ ⎦

[ ]Va . Further, input values are required for 
- for the gamma distribution, the coefficients of variation of the data Y(s) 

are the appropriate choice. The R(s) may be all be set to a constant matrix.  

r (0) | (0)Yβ
( )sΛ

⎪ ⎪⎩ ⎭
 (A.20) 
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Appendix B   Motor bodily injury data 
B.1 Gross payments 

These have been taken from Appendix 3, Table B.3.5 in Taylor (2000)  

Accident Payments in $(31/12/95) in $(000) in development year
year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1980 4,677 9,989 8,746 10,228 8,572 5,786 3,855 1,445 1,612 626 1,172 589 438 473 446 0
1981 5,288 8,089 12,839 11,830 7,760 6,182 4,118 3,016 1,775 1,785 2,645 266 38 45 159
1982 2,924 9,869 10,242 13,808 8,785 5,409 2,425 1,597 2,149 3,296 917 295 428 359
1983 3,600 7,514 8,247 9,327 8,584 4,245 4,096 3,216 2,014 592 1,188 691 367
1984 3,642 7,394 9,838 9,734 6,377 4,884 11,920 4,189 4,492 1,760 944 922
1985 2,463 5,033 6,980 7,722 6,702 7,834 5,579 3,622 1,300 3,069 1,370
1986 2,267 5,959 6,175 7,051 8,102 6,339 6,978 4,396 3,107 903
1987 2,009 3,701 5,297 6,886 6,496 7,550 5,855 5,751 3,871
1988 1,860 5,282 3,650 7,528 5,156 5,766 6,862 2,573
1989 2,331 3,517 5,310 6,066 10,149 9,265 5,262
1990 2,314 4,486 4,113 6,999 11,163 10,058
1991 2,607 3,952 8,228 7,905 9,307
1992 2,595 5,404 6,578 15,546
1993 3,155 4,975 7,961
1994 2,626 5,703
1995 2,827  



- B2 - 

B.2 Ultimate claim numbers 

These have been taken from Table 2.4 in Taylor (2000)  

Accident Ultimate
year no. of claims

1980 779
1981 930
1982 894
1983 964
1984 982
1985 938
1986 957
1987 855
1988 874
1989 873
1990 816
1991 870
1992 900
1993 886
1994 887
1995 903  
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B.3 PPCI 

Accident PPCI in $(31/12/95)  in development year
year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1980 6,004 12,823 11,228 13,129 11,004 7,428 4,949 1,856 2,069 803 1,504 757 562 607 573 0
1981 5,686 8,698 13,805 12,720 8,344 6,648 4,428 3,243 1,908 1,919 2,844 286 41 48 171
1982 3,271 11,039 11,457 15,446 9,826 6,050 2,712 1,786 2,403 3,687 1,026 331 478 401
1983 3,735 7,794 8,555 9,675 8,904 4,404 4,249 3,336 2,089 614 1,233 717 381
1984 3,708 7,530 10,018 9,912 6,494 4,973 12,138 4,265 4,574 1,792 961 938
1985 2,625 5,366 7,442 8,233 7,145 8,352 5,948 3,861 1,386 3,271 1,461
1986 2,369 6,227 6,452 7,368 8,466 6,624 7,291 4,594 3,246 944
1987 2,349 4,328 6,196 8,053 7,598 8,831 6,848 6,726 4,528
1988 2,128 6,043 4,177 8,614 5,900 6,598 7,851 2,944
1989 2,670 4,028 6,082 6,948 11,626 10,613 6,027
1990 2,836 5,498 5,040 8,578 13,680 12,325
1991 2,996 4,543 9,458 9,086 10,698
1992 2,883 6,004 7,309 17,273
1993 3,561 5,615 8,985
1994 2,961 6,430
1995 3,131

Calculated from B.1 and B.2  
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